
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  7 ( 1 9 7 2 )  239-254 

Review: The Theoretical Strength of 
Solids 

N. H. M A C M I L L A N  
R/AS, Martin Marietta Corp, 1450 South Rolling Road, Baltimore, Maryland 21227, USA 

In principle, there is an upper limit to the mechanical strength of any material under given 
test conditions. This limit is called the ideal strength. This paper attempts to define the 
ideal strength so far as is presently possible. Firstly, a brief summary is given of the highest 
strengths obtained experimentally. Next follows a detailed account of the attempts to 
calculate the ideal strength from theoretical considerations. Finally, the experimental and 
calculated results are compared, and it is concluded that in one or two instances the ideal 
strength has probably been realised experimentally. 

1. Introduct ion 
As greater and greater mechanical strengths are 
obtained from engineering materials it is only 
logical to ask what is the upper limit to the 
strength of a solid. This review is concerned 
with the extent to which that question can be 
answered today. 

The maximum strength of a solid has come to 
be referred to as the theoretical strength, and 
this convention has been continued in the title of 
this review in order to avoid confusion. How- 
ever, because this strength has probably been 
realised experimentally, it is suggested that the 
term ideal strength is more suitable, and this 
latter term is used in the text below. 

A knowledge of the ideal strength is important 
to our understanding of many problems in the 
solid state. Thus, the ideal strength plays an 
important role in determining the stress distribu- 
tion (and other properties) in the region at the 
tip of a crack. It is, therefore, one of the major 
factors in determining cleavage behaviour, and 
in determining whether a material will behave in 
a brittle or ductile manner [1-3]. Likewise, the 
ideal strength plays a role in defining dislocation 
core radii [4, 5] and in defining the point at 
which coherency breakdown occurs at a particle- 
matrix interface [6-8]. Knowledge of the 
temperature variation of the ideal shear strength, 
for temperatures close to the melting-point, might 
also provide some insight into the phenomenon 
of melting [9]. 

We should note, however, that the calculations 
of ideal strengths reviewed here were all made on 
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an assumption of homogeneous deformation. 
Consequently, the results should strictly only be 
applied to problems of inhomogeneous deforma- 
tion in which stress and strain vary but little over 
distances comparable with the range of the inter- 
atomic forces. This is not the case in the immedi- 
ate region of the tip of a crack, of the core of a 
dislocation, or of a particle-matrix interface, for 
example, so that due caution must be exercised in 
applying the results of these calculations to such 
problems. 

The material reviewed in this paper has been 
divided into three sections. Section 2 discusses the 
high strength data obtained experimentally. 
Section 3 takes up the question of the calculation 
of the ideal strength from theoretical considera- 
tions, and reviews the results of the published 
work in that area. Finally, section 4 compares the 
experimental and calculated results as far as is 
possible, and considers the question of whether 
the ideal strength of a solid is ever observed 
experimentally. 

2. Experimental Measurements of Very 
High Strengths 

2.1. Summary of Results 
It has been found experimentally that the very 
highest strengths are mostly obtained from 
specimens falling into one of three loosely 
defined categories: (i) very small whisker single 
crystals; (ii) larger single crystals of materials 
such as silicon, germanium and alumina; 
(iii) silica glass rods and fibres. In each category 
most of the high strengths have been obtained in 
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the same way, i.e. by the low tempera tu re  bend  
or  tensile testing o f  rods  or  bars  having highly 
perfect  surfaces (most ly p repa red  by  flame or  
chemical  polishing).  Such surfaces are  at  least  
opt ical ly  perfect.  Kel ly  [3] and  the present  
au thor  [10] have summar ised  much o f  this 
exper imenta l  work.  Subsequently,  fur ther  da ta  
have been publ i shed  [11-16]. Table  I lists some 
results. 

The whisker  crystals (i) are p r o b a b l y  the most  
near ly  perfect  specimens present ly  available.  In  
some cases they conta in  no observable  defects a t  
all;  in o ther  cases jus t  a single, axial ,  screw 
dislocat ion.  Their  s trength appears  to be 
influenced pr imar i ly  by  their  surface condi t ion.  
A wide range o f  mater ia ls  have been p repared  as 
whiskers,  by a var ie ty  of  techniques [17], so tha t  
high strengths have been ob ta ined  f rom many  
solids in this form. 

Very high strengths have only been ob ta ined  
f rom larger  crystal l ine specimens (ii) o f  silicon, 
ge rmanium and a lumina  at  low temperatures .  In  
such mater ia ls  the Peierls stress is so high as to 
effectively immobi l i se  any dis locat ions present,  
and  bo th  perfect  [18, 19] and  imperfect  (see 
table  I) crystals can show high strength. In  bo th  

cases the strength is again  found  to be cont ro l led  
p r imar i ly  by  surface condi t ion.  

Specimens o f  silica (and other)  glass rods  and 
fibres (iii) o f  a wide range o f  sizes have also been 
found  to be very strong. As in bo th  previous  
cases the strength is found  to be cont ro l led  
main ly  by the surface condi t ion.  Structural  
studies [20, 21] have shown tha t  these mater ia ls  
have considerable  short  range order,  and  conta in  
a cont inuous  ne twork  o f  nearest  ne ighbour  bonds  
o f  similar geomet ry  and  c o m p a r a b l e  s trength to 
the nearest  ne ighbour  bonds  of  the co r respond-  
ing crystal l ine material .  By virtue of  their  lack o f  
long-range order,  however,  glassy mater ia l s  do  
not  conta in  glissile dis locat ions.  

Mos t  of  the results quoted  in table  I represent  
an isola ted highest  s trength value recorded  in a 
series o f  experiments.  In  a few instances,  how-  
ever, consistent  high strengths have been 
recorded,  comparab le  with these isolated values.  
These da ta  are discussed be low in a little more  
detail .  

In  the first such instance C r u m p  and Mitchel l  
[11, 16] made  a series o f  accura te  tensile 
measurements  on c a dmium whiskers.  They 
repor ted  tha t  no defects of  any  k ind  were visible 

T A B L E  I Some experimental measurements of very high strengths 

Material Maximum tensile stress Reference 
s 

X 10  -1~  ~ ~ strain 
dynes/cm ~ E 

Remarks 

(i) Whiskers 
NaC1 1.08 0.026 Gyulai [57] 
Ag 1.73 0.040 Brenner [59] 
Cu 2.94 0.028 ,, 
Fe 13.10 0.049 
Cd 2.80 0.04 Crump and Mitchell [11 ] 

(ii) Larger single crystals 
Ge 3.82 ~ 0.02 Johnson and Gibbs [60] 
Si 4.14 - -  Gilman [61 ] 
A12Oa 6.85 ~ 0.02 Proctor et al  [62-64] 

(iii) Glass rods and fibres 
SiO2 13.1 ~ 0.18 Hillig [65] 
SiO2 13.8 ~ 0.19 Morley et al  [66] 

(iv) Other data 
Au, A1, Cu - -  - -  Gane et al  [22-25] 
Ge 7-12 0.05-0.08 ,, 
MgO 5-9 0.02-0.035 ,, 
Cu - -  - -  Brown et al  [7-8] 

(100) tension. ~-{110} (1 i0 )  = 0.54 = 0.030 G 
,, r{1 1 1} ( l i 0 )  0 . 7 1  0.031 G 

(1 11 ) tension. = 0.80 = 0.022 G 
,, ~-{110}'~1T1) = 3.58 = 0.060 G 

(1 19-0) tension. ~- = 0.033-0.069 G for different 
glide systems. (10 i0)  tensile stress = 0.026 E 

Bending, 78~ 0.7 • 1.5 mm bar 
3.8 cm diameter ring pulled in tension 
Bending of 1 mm diameter rods, unknown 
orientation 

Bend tests, 78~ 0.5-3 mm diameter rods 
Tensile test, 77 ~ K 

Maximum shear stress ~ 0.05 G 
Maximum shear stress ~ 10-15 ~ 0.2-0.3 G 
Maximum shear stress ~ 9-15 ~ 0.09-0.15 G 
Maximum shear stress at 873~ g 0.039 G 

E, G are the appropriate Young's and shear moduli, r {hkl } (UVW) is the largest component of O'max on any plane of 
the type {hkl} in any direction of the type (UVW). 
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either in the interior or on the surface of their 
whiskers, by means of either optical or electron 
microscopy. An interesting feature of their work 
was that, at fracture, their crystals did not 
shatter into many fragments as is usual at very 
high strengths, but only into two halves [16]. 
Thus, it could be determined that half their 
crystals failed by cleavage across a {1010} plane, 
yielding apparently atomically smooth fracture 
surfaces, and leaving no traces of any disloca- 
tions in the broken parts. The remaining crystals 
failed by shear on various glide systems, yielding 
slightly ragged fracture surfaces, and leaving a 
few dislocations in the fracture zone.The strength 
values quoted in table I were calculated from 
Crump and Mitchell's data by the present 
author. 

Two other such instances do not fall into any 
of the three categories outlined above. In one 
case Gane and various co-workers [22-25] used a 
very small scale indentation technique to study 
the strength of specimens of gold, copper, 
aluminium, germanium and magnesium oxide. 
However, due to the possible inaccuracies in 
calculating the stresses under the indenter, no 
great significance should be attached to the 
values quoted in table I. Also, since the stress 
distribution under the indenter is both complica- 
ted and markedly inhomogeneous, these results 
are not directly comparable with the calculated 
results reported in section 3. 

In the other case Ashby et al [6] and Brown 
et al [7, 8] attempted to obtain an estimate of the 
ideal shear strength of copper, by measuring the 
stress at which interface dislocations were 
nucleated in a perfect region of a copper matrix 
immediately adjacent to a second phase particle. 
The former authors [6] studied the effect of hy- 
drostatic pressure on the systems copper-silica and 
copper-alumina, in which the interface is inco- 
herent. They found that dislocations were nuclea- 
ted even at low applied pressures (corresponding 
to stresses in the matrix far less than the ideal 
strength) provided that the energy of the system 
was thereby reduced. These experiments, there- 
fore, do not measure the ideal strength. Brown 
et al [7, 8] studied the system copper-cobalt, and 
found that large coherent precipitates could be 
obtained by ageing the quenched alloy at 873~ 
This result suggests that the ideal shear strength 
of copper at 873 ~ K is greater than the maximum 
shear stress generated at the particle-matrix 
interface (estimated to be 0.039G where G is the 
appropriate shear modulus). As in the case of the 

indentation experiments, however, the calcu- 
lated stress is of uncertain accuracy, and the 
stress distribution is markedly inhomogeneous. 
These data, therefore, are also not directly 
comparable with the calculated results reported 
in section 3. 

2.2. Interpretation of Results 
In the case of both crystalline and glassy solids it 
is accepted that the interatomic cohesive forces 
are exceedingly strong, and that the presence of 
glissile dislocations and/or tiny cracks (most 
frequently initiated at surface heterogeneities) is 
the main cause of the relative weakness of most 
specimens. 

Since even a single such defect can drastically 
reduce the strength of a specimen, and since such 
defects occur on a more or less statistical basis, 
it is also explained why very high strength, in all 
materials, is normally such a structure-sensitive 
and non-reproducible property, and why it is 
most frequently observed in very small speci- 
mens. 

Such an understanding of mechanical proper- 
ties suggests that, for any material, the strength 
increases with increasing structural perfection 
and, consequently, that the ideal strength will 
only be realised when the greatest possible 
perfection is attained. There are, however, 
certain limits to the degree of structural perfec- 
tion attainable in a given specimen. 

For crystalline specimens a limit is imposed 
firstly by thermodynamic considerations. An 
unstressed crystalline solid at thermodynamic 
equilibrium contains certain defects, e.g. lattice 
vibrations, a certain concentration of vacancies, 
etc. Such defects are necessarily present in any 
specimen. Incontrast, under the same conditions, 
other sorts of defects, e.g. dislocations, would not 
be expected to occur. However, when the solid is 
deformed its thermodynamic potential is changed, 
as are the energies of formation of each kind of 
defect. At strains corresponding to the highest 
strengths these changes could conceivably be 
quite large. Under such conditions, therefore, the 
equilibrium concentrations of the different kinds 
of defects already present must change, and it is 
also conceivable that the presence of additional 
different kinds of defects in the solid could 
become thermodynamically favourable. The 
extent to which such changes would actually 
occur, in a given test, would depend on such test 
conditions as temperature and strain rate, which 
thus impose a second limit on the degree of 
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perfection that may be obtained. 
It is thus apparent that the ideal strength, like 

the strength measured in any experiment, is a 
function not only of the particular material under 
test, but also of the testing procedure. Thus, this 
strength is a function of specimen geometry, 
mode of deformation, temperature, strain rate, 
type of loading (e.g. dead loading, pressure 
loading etc.) imposed by the loading device, and 
SO OD.  

In so far as it represents a region where the 
regular atomic array is disrupted, the surface of a 
solid may also be regarded as a defect. (This 
raises the question of whether the surface of a 
solid is inherently weaker than the interior.) In a 
real test the demands of specimen geometry 
define a certain surface orientation and a certain 
surface to volume ratio. The requirements of 
thermodynamic equilibrium, however, will 
generally require different values of these para- 
meters and, moreover, values that change as the 
specimen is deformed. Thus, again the require- 
ments of a practical test are incompatible with 
those of thermodynamic equilibrium, and hence 
influence both the attainable degree of crystal 
perfection and the ideal strength. 

For amorphous specimens, which by their 
very nature are never in thermodynamic 
equilibrium anyway, the details of the preceding 
arguments must differ, but the same general 
conclusion can be d rawn-namely  that the 
requirements of a practical test procedure are 
likely to influence the attainable degree of 
specimen perfection, and hence the ideal strength. 

The question now arises of whether, in any of 
the series of high strength measurements made 
under constant test conditions, the highest 
strength value measured was actually the ideal 
strength for those conditions. An attempt is 
made to answer this question in section 4, by 
comparing the experimental data discussed in 
this section with the results of the calculations 
presented in the next section. 

3. Calculations of the Ideal Strength 
3.1. General Considerations 
In principle the methods of quantum mechanics 
and quantum statistical mechanics enable the 
ideal strength of a material to be calculated for 
given test conditions. 

A material specimen under test consists of a 
finite three-dimensional array of mutually 
interacting atoms, that are acted on by some 
distribution of surface forces, and make small 
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oscillatory motions about their equilibrium 
positions. A complete description of this dynamic 
atomic system contains all the information 
necessary to calculate the macroscopic proper- 
ties (thermodynamic observables). In principle 
such a calculation proceeds from the definition 
of a system Hamiltonian and solution of the 
corresponding Schr6dinger equation, to calcula- 
tion of a partition function and the conventional 
thermodynamic potentials. Finally, the macro- 
scopic physical properties are obtained from 
these potentials. Thus, for example, the state of 
stress in the body can be obtained as the appro- 
priate derivative, with respect to strain, of either 
the internal energy or the Helmholtz free energy. 
The equilibrium and stability of the system 
require that there be no net force on each atom, 
and that the total system potential energy be a 
minimum; or equivalently, that the appropriate 
thermodynamic potential be a minimum. Note 
that these are requirements on the total system 
potential, which includes a contribution from the 
work done, in any virtual displacement, by the 
applied surface forces. Thus, such an analysis 
reflects the dependence of the strength properties 
of the material on the test conditions. 

In practice there are two major difficulties in 
the scheme of calculation outlined above. The 
first is the lack of a sufficiently detailed know- 
ledge of the interatomic forces to enable the 
correct Hamiltonian to be employed, and the 
second is the complexity of the calculations 
involved. In recent years the advent of high- 
speed digital computers has gone some way 
towards removing the latter difficulty. Due to 
these difficulties, however, none of the calcula- 
tions of ideal strengths made to date, and 
reviewed in the following pages, is in any way 
rigorous. Thus, for example, in no case is the 
dynamic nature of the atomic system taken into 
account, but rather the static lattice potential 
energy (the largest contribution) is tacitly 
assumed equal to some thermodynamic poten- 
t ia l -  which one it is often not clear, as the test 
conditions are rarely precisely specified. Like- 
wise, where lattice sums have been performed, 
they have invariably been performed only 
over atoms situated at their equilibrium positions 
in the interior of the solid. Thus, surface effects, 
thermal displacements, lattice vacancies etc have 
not been taken into account. Consequently, the 
theoretical calculations represent a best approxi- 
mation at 0~ when zero point motion is the 
only internal defect neglected. Also, the calcula- 
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tions can throw no light on the question of 
whether the surface of a solid is inherently 
weaker than the interior. Only in a few cases 
[10, 26, 27] has any attempt even been made to 
study the stability of the deformed solid. Other 
authors tacitly assume stability throughout the 
range of deformation under consideration. 

3.2. Calculations Relating the Ideal Strength 
to Other Physical Properties 

One way to circumvent the lack of knowledge 
about the cohesive forces, and other difficulties, 
is to attempt to relate the ideal strength of a solid 
directly to other macroscopic physical properties. 
Thus, Polanyi [28] and Orowan [29-31], and 
subsequently other authors, obtained a rough 
estimate of  the ideal uniaxial tensile strength 
O'max in terms of the equilibrium surface energy 7 
and interplanar spacing a0 of the planes perpen- 
dicular to the tensile axis, and the appropriate 
Young's  modulus E. Such an approach is equally 
applicable to any solid. Details of  the analyses 
vary, but the essential assumptions are: (i) that 
when a tensile specimen is extended uniaxially the 
resulting stress-displacement curve has a simple 
analytical form (e.g. Johnston [32] and Kelly [3] 
assumed a sine curve, chosen to give the correct 
modulus at zero strain); (ii) that o-max is repre- 
sented by the maximum value of this curve; 
(iii) that the work done on the body (i.e. the 
change in system potential, or the stored elastic 
strain energy) in raising the stress to the maxi- 
mum level is 27 per unit area of atomic plane 
normal to the tensile axis. This latter assumption 
has been discussed in detail elsewhere [10]. 
Kelly's analysis [3] gives 

= ( E 7 1 ~ / 2  " 
o-max \ a t  / (1) 

From this equation Kelly obtained the values 
given in table II. The data used are appropriate 
to 293~ except for those in brackets which 
refer to 0~  [1, 2]. 

In a report by the US National Academy of 
Sciences [33] the same calculation was used to 
estimate o-max for silica glass as 2.8 x 1011 
dynes/cm z, or ~ 0.4 E. 

The same authors [33] have repeated the 
Orowan-Polanyi calculation, using a more 
general stress-displacement function containing 
three adjustable parameters.The three parameters 
were calculated from appropriate surface energy, 
thermal expansion and elastic constant values. 
o-max was taken to be the maximum value of the 
particular stress-displacement function defined 
by these values. As before, the analysis can be 
applied equally well to any material. Different 
reasonable functions were found to give a 
spread of about 2 x in the values of o-max, which 
is perhaps some guide to the sort of  accuracy to 
be expected from this approach. 

By means of a somewhat similar approach 
McClintock and O 'Day  [34] estimated the ideal 
tensile strength for triaxial tension (i.e. volume 
expansion) as a fraction of the bulk modulus. 
These authors assumed a stored elastic strain 
energy U that was a function only of some 
characteristic radial length r, so that 

I m l U = A (ro/r) m - n (r~ (2) 

where A and r0 are constants. The ideal strength 
was taken to be the maximum value of aU/8r .  
For the case n = 1 they showed that, as m 
changed from 3 to 13, so the ratio of the ideal 
strength to the bulk modulus fell from 0.074 to 
0.039. 

As in the preceding cases this last treatment is 

T A B L E  11 Simple calculations of the ideal tensile strength C'max 

Material Tensile E • 10 -11 
direction dynes/cm 2 

7 ergs/cm 2 amax • 10 - n  

d y n e s / c m  2 

ffmax 

E 

Ag (1 1 1 ) 12.1 1130 2.4 0.20 
Au (1 1 1 } 11.0 1350 2.7 0.25 
Cu (1 1 1 ) 19.2 1650 3.9 0.20 
Cu (100 ) 6.7 (7.5) 1650 (3630) 2.5 (3.87) 0.37 
W (100 ) 39 (40.5) 3000 (6415) 6.1 (9.08) 0.16 
~-Fe (100 ) 13.2 (14.3) 2000 (4520) 3.0 (4.79) 0.23 
c~-Fe (1 1 1 ) 26.0 2000 4.6 0.18 
Si (11 1 ) 18.8 1200 3.2 0.17 
C (diamond) (1 1 1 ) 121 5400 20.5 0.17 
SiO2 (glass) - -  7.3 560 1.6 0.22 
NaC1 (100 ) 4.4 115 0.43 0.10 
MgO (100) 24.5 1200 3.7 0.15 
Al~O3 (0001 ) 46.0 1000 4.6 0.10 

(o.51) 
(0.22) 
(0.34) 
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not particular to any one material, and in fact 
has been employed by Demishev and Bartenev 
[35, 36] to obtain an estimate of  7.83 x 1011 
dynes/cm 2 for the ideal strength of silica glass in 
triaxial tension. 

Frenkel [37] also used a similar method to 
estimate the ideal shear strength "t'max of a solid 
subjected to a simple shear mode of deformation. 
He assumed that, for any solid, the shear stress -r 
to shear any plane a distance x over its neigh- 
bour was given by 

2~rx 
-r = K sin ~- -  (3) 

where b is the appropriate repeat distance in the 
direction of shear. The planes are assumed to be 
undistorted by the shear. K is chosen to give the 
correct shear modulus G. It  is then easily shown 
that 

Gb 
7max = 2--~-d (4) 

where d is the interplanar spacing of the shearing 
planes. Hence, for an fcc metal in {1 1 1} (1 12) 
shear, "rm&x = G/2zr 42. 

Equation 3 may also be written as 

~U(x) 
~ - ~ x  ( 5 )  

where ~'max is the maximum value of-r and 

U(x) = 4--~-d 1 - cos - -  (6) 

and represents the stored elastic strain energy of 
the bulk crystal per unit area of shear plane. 
Mackenzie [38] recognised that equation 6 
represented the first two terms of a Fourier 
series, and suggested that incorporation of 
higher order terms in the series would give a 

better approximation to the stored elastic strain 
energy. He showed how to deduce the coefficients 
of  the next two terms for the particular cases of  
an fcc crystal deformed homogeneously in {1 1 1 } 
(112)  shear and {111} ( l i 0 )  shear. I f  it is 
assumed that U(x) refers not to a bulk crystal, 
but to a crystal consisting of just two close 
packed atomic planes, then Mackenzie's argu- 
ments become applicable also to cph crystals of  
ideal axial ratio ~/(8/3). Kelly [3] has further 
extended Mackenzie's ideas to bcc metals (for 
{1 10} ( l i 0 )  shear), to cph metals with non- 
ideal axial ratios, to graphite, and to alumina. In 
all cases the estimate of  ~'max SO obtained is very 
sensitive to the coefficients of  the additional 
higher order terms. Table I I I  lists some results 
obtained by Kelly [3]. Except in the one 
designated instance these results are computed 
from room temperature data. In each case G is 
taken to be 1/s'44 (in the notation of Nye [39]), 
thus allowing for the relaxation and distortion 
that would tend to occur during the shear 
process. Note that this is inconsistent with the 
strict geometric arguments used to obtain the 
coefficients of  the extra terms of U(x) in the first 
place. This analysis gives good agreement with 
the maximum shear strain observed in experi- 
ments with the Bragg bubble raft model of  a 
crystal [40, 41]. The oft-quoted result that 
Tmax ~- G/30 for an fcc metal originates from this 
analysis by Mackenzie. 

These simple calculations can be criticised on a 
variety of grounds, in addition to those already 
mentioned. Their starting point is an empirical 
description of a bulk property rather than the 
description of the atomic system. In no case is 
any model of the interatomic forces taken into 
account explicitly and, with the exception of the 
work of Mackenzie and its development by 

T A  B L E III Simple calculations of the ideal shear strength ~'m~x 

Material Shear plane and G x 10 -11 rmax/G rmax x 10 -1~ 
direction dynes/cm 2 dynes/cm 2 

Cu (10~ {1 1 1 } (112) 3.32 0.028-0.039 0.93-1.29 
Cu {1 1 1 } (1 12) 3.08 ,, 0.86-1.20 
Au {1 1 1 } (112) 1.90 ,, 0.53-0.74 
Ag {1 1 1 } (1 12) 1.97 ,, 0.55-0.77 
AI {11 1 } (11 2) 2.30 0.65-0.90 
A1 {1 11 } (1 i0) 2.30 0.114" 2.62 
Fe (li0} (111) 6.0 0.11-0.13 6.6-7.8 
W {1 i0} (1 1 1 ) 15.0 0.11-0.13 16.5-19.5 
AleO3 {0001 } (11 20) 14.7 0.115 16.9 
Zn (0001 } (1010) 3.8 0.034* 1.3 
C (graphite) {0001 } (10i0) 0.23 0.05* 0.0115 

*These values of ~-maxlG differ from 0.028-0.039 due to non-ideal axial ratios. 
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Kelly, neither is crystal structure an explicit 
factor in the calculations. Nevertheless, despite 
the fact that the results of these calculations can 
only be regarded as order of magnitude estimates, 
they are widely quoted. Also, the early work of 
Polanyi and Frenkel was historically important 
in emphasising the difference between the actual 
and the ideal strengths of solids. The need to 
reconcile this disparity lead in turn to the 
appreciation of the role of defects in determining 
mechanical behaviour. 

3.3. Calculations of the Ideal Strength using 
the Morse Potential 

A different but still very simple approach to 
calculating the ideal strength of a solid is that 
adopted first by de Boer [42]. This treatment 
attempts to remove one criticism of the work 
already mentioned in that it makes use of an 
explicit, albeit crude, model of the interatomic 
forces in a given material. As before, the results 
should only be regarded as order of magnitude 
estimates. 

De Boer assumed that the energy of an ali- 
phatic carbon-carbon bond, as a function of the 
interatomic separation, could be represented by a 
Morse function. The three adjustable parameters 
of this function were deduced from the equi- 
librium carbon-carbon distance, the binding 
energy, and a characteristic adsorption frequency, 
determined spectroscopically. The force required 
to break one such bond is just the maximum 
slope of the resultant Morse function. De Boer 
calculated this force as 5.64 x 10 -~ dynes and, 
knowing the number of bonds per unit area 
(from crystallographic data), he estimated amax, 
the ideal uniaxial tensile strength, of phenol 
formaldehyde and m-cresol formaldehyde as 
4.3 x 1011 and 3.8 x 1011 dynes/cm~respectively. 
The calculations assumed also that the straight 
carbon-carbon chains of these structures were 
continuous throughout, and aligned parallel to 
the tensile axis. 

Tyson [43] calculated crmax for tl-~e (1 1 1) 
direction in diamond in essentially the same way, 
obtaining amax = 10.6 x 1011 dyncs/cm 2. 

Likewise, by applying the same analysis to 
the pseudo-diatomic molecule SiOa-O, Ladik 
and Naray-Szabo [44] estimated a~ax for silica 
glass as 2.42 x 1011 dyncs/cm 2. 

The same approach has been extended to zig- 
zag carbon-carbon chains (e.g. polymethylene), 
where simultaneous bending and stretching of 
the bonds occurs [33]. In this work a Morse 

function model of the stretching of the bonds was 
combined with an empirical model of the bend- 
ing of the bonds to obtain a potential energy- 
displacement function. This function gave a 
smooth stress strain curve, and was consistent 
with the binding energy and equilibrium stereo- 
chemistry of the chain, the inversion energy, and 
the spectroscopically determined force constants 
for bending and stretching of the bonds of the 
chain. From this model the ideal uniaxial tensile 
strength O'max parallel to the carbon-carbon 
chains was estimated as 3 x 1011 dynes/cm 2 (at 
a strain N 0.3). 

The same authors made a few qualitative 
attempts to extend this argument to other 
carbon-carbon structures. One example o f  
interest is graphite, where Crmax in any direction~ 
in the basal plane was estimated to be 

17 x 1011 dynes/cm 2. Due to its layer struct- 
ure graphite may also be expected to show high 
strength in biaxial loading, in contrast to the 
chain structures. 

Tyson [43] employed a similar potential model 
to calculate "rmax for diamond in {11 1 } (1 i0> 
simple shear. He considered the change in energy 
of a carbon atom during shear due both to the 
bending and the stretching of the bonds with its 
nearest seven neighbours. He also assumed the 
stretching to be described by a Morse function. 
The bending he described by an empirical 
function that took into account the fact that the 
resistance to bending decreased with increasing 
bond length. He then calculated "rmax from the 
product of the derivative of the energy per atom 
with respect to the shear strain and the number of  
carbon atoms per unit area, obtaining 9.16 x 10 ix 
dynes/era 2 at a shear strain of 0.29. 

Recently Milstein [27] has used a Morse 
potential function to calculate the ideal (100} 
unconstrained uniaxial tensile and compressive 
strengths of bcc c~-iron. For the adjustable 
parameters in the model Miistein used value,; 
determined originally by Girifalco and Weizer 
[45] from the bulk compressibility, the binding 
energy, and the equilibrium lattice parameter. 
Milstein employed computational methods very 
similar to those used by the present author [10], 
by Born and Fiirth [26], and by Tyson [43] in 
their calculations with the Lennard-Jones and 
Born-Mayer potentials (see sub-sections 3.4.2 
and 3.4.3). Like the present author [10] and 
Born and Ffirth [26], Milstein also investigated 
the stability of the deformed crystal, assuming 
dead loading conditions. In discussing Milstein's 
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results here the same notation as is to be used in 
sub-sections 3.4.2 and 3.4.3 is employed, for the 
sake of consistency, even though this has not 
yet been defined. 

Thus, for bcc c~-iron Milstein found that in 
tension the deformation remained stable almost 
up to the maximum value of %3 of 1.7 • 109 
dynes/cm 2 at a strain e~  = 0.017. Hence, very 
little error would arise in this case from assuming 
the deformation to be stable up to the maximum 
value of aa3, and equating the ideal strength to 
this value. In compression the first instability 
occurred at %3 = -5 .05  • 109 dynes/cm 2, 
c3~ = - 0.016. 

The present author [10] also investigated this 
same potential model, and found that it predicted 
the stable form of iron to be an fcc structure 
having a nearest neighbour distance ~ 3 ~  
larger than that in the equilibrium bcc form. A 
postulated cph polymorph, with the Same larger 
nearest neighbour distance and ideal axial ratio, 
had a binding energy only fractionally higher 
than the fcc form. Milstein, however, found that 
the model predicted that a body-centred tetra- 
gonal (bct) form, having c and a lattice para- 
meters of 1.26 and 0.89 times the bcc lattice 
parameter respectively, would have a binding 
energy ~ 0.02 ~ lower than the fcc form. For 
this postulated structure he found that, in (001)  
tension, the first instability occurred at 
a33 = 8.90 • 101~ dynes/cm 2 at a strain c33 = 
0.071. In this case the ideal strength is far less 
than the maximum value of ~rz3 which he 
calculated as 4.44 x 1011 dynes/cm 2. In compres- 
sion Milstein found the first instability at 
a33 = - 3.22 x 1010 dynes/cm =, c83 = - 0.074. 

3.4. Calculations of the Ideal Strength of 
Van der Waals  a n d l o n i c  Solids 

3.4.1. Introduction 
Calculations of the ideal strength from more 
realistic models of the interatomic forces have 
only been made for van der Waals and ionic 
solids, in which these forces are best understood. 
Even in these cases, however, the available 
models of the interatomic forces are only 
approximate. 

It is not intended to give here a review of inter- 
atomic potential models. Rather, the interested 
reader is referred in the first instance to reviews of 
van der Waals bonding by Pollack [46] and 
Winterton [47], and of ionic bonding by Tosi 
[48]. 

For  present purposes it is sufficient to note 
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that the procedure adopted in all of the work 
discussed here has been to obtain a reasonable 
approximation to the analytical form of the 
major contributions to the interatomic potential, 
and then to introduce (say) n adjustable para- 
meters into this approximate function. The 
values of these n parameters are then computed 
from the experimentally measured values of n 
physical properties, and the resulting model used 
to calculate the required (n + 1) t~ property (i.e. 
the ideal strength). In this way it is hoped that 
the various errors in the potential model will tend 
to cancel each other out. Clearly, if the (n + 1) th 
property is closely related to the other n the 
calculation is more likely to yield a reliable 
result. However, easily measurable structure 
insensitive physical properties tend to depend on 
the shape of the bottom of the potential energy 
well that each atom occupies in the lattice, while 
the ideal strength tends to depend o n  the 
maximum slope of the side of this potential well. 
Thus, ideal strengths are not closely related to 
other easily measured properties, and the 
calculated values of these strengths are of 
uncertain accuracy. 

The potentials that enter into the present 
discussion-i.e,  the Lennard-Jones model of 
van der Waals solids, and the Born and Born- 
Mayer models of ionic solids - are both spheric- 
ally symmetric, two-body, central force poten- 
tials. As such they are most reliably applied to 
structures of high symmetry, and tend to become 
increasingly unreliable as the strain increases, 
symmetry decreases, and the constituent atoms 
become polarised. Due to the relatively much 
weaker nature of the interatomic forces in a van 
der Waals solid as compared to an ionic solid, it 
is likely that polarisation is rather more serious 
in the latter case, and the calculated ideal 
strengths accordingly less reliable. 

3.4.2. Van der Waals Solids 
The first estimates of the strength of van der 
Waals forces were made by de Boer [42] in the 
course of his studies, described above, of 
m-cresol and phenol formaldehyde polymers. 
The major contribution to van der Waals 
binding is due to dipole-dipole interactions, 
which give rise to an interaction energy depend- 
ing on the inverse sixth power, and a force of 
attraction depending on the inverse seventh 
power, of the distance between the atoms. Using 
this model of the attractive forces, and assuming 
that the repulsive forces per unit area between 
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two planes were proportional to the inverse tenth 
power of the interplanar distance, de Boer made 
two different estimates of a lower limit to the 
ideal tensile strength of the van der Waals forces 
between the carbon-carbon chains of m-cresol 
formaldehyde and phenol formaldehyde poly- 
mers. The first estimate gave values of 6.4 and 
8 x 108 dynes/cm 2 respectively, and the second, 
which de Boer considered a better estimate, gave 
values of 3.2 and 3.9 x 109 dynes/cm 2 respec- 
tively. De Boer also made a calculation of the 
contribution of van der Waals forces to the ideal 
tensile strength of sodium chloride (see sub- 
section 3.4.3 below). 

Subsequently, Mackenzie [38], Tyson [43], 
Born and Fiirth [26], and the present author [10] 
have all made estimates of the ideal strength for 
various modes of homogeneous deformation of a 
monatomic fcc van der Waals solid, using the 
Lennard-Jones 6-12 potential model. The discus- 
sion of this work given here is taken from [10], 
and is essentially a more formal and general 
statement of the method used by Tyson [43]. 
Both authors used a computer to perform all 
lattice summations, and the minor discrepancies 
between their results are due only to differences 
in computational procedures. 

In the Lennard-Jones potential model the 
energy of interaction u(R) of  some arbitrary 
origin atom in the interior of the deformed 
crystal with some other interior atom at position 
Xi is given by 

u(R) = A ~ 2  t~6 (7) 

where 
S = ( X i X i )  1/2 . ( 8 )  $ 

The total energy of the origin atom is given by 

U = �89 ~ u(R) (9) 
R 

where ~ runs over all the atom positions 
R 

in an (interior) region surrounding the origin 
atom. Since the deformation is homogeneous 
and surface effects are neglected, U is independ- 
ent of the choice of origin atom and can be 
regarded as the energy of the whole crystal, 
expressed per atom. The present author typically 
included a few hundred atoms in each summa- 
tion ~, giving a convergence error in the 

R 
calculated value of the ideal strength of < 1 
[10]. Further details of the different summation 
and other computational procedures used by the 
*In equations marked thus * the Einstein summation convention is implieL 

several authors can be found in the original 
references [10, 26, 38, 43]. 

If  the atom at Xi in the deformed crystal was 
at xi in the unstrained state, so that the homo- 
geneous deformation is described by the non- 
symmetric second-rank strain tensor c~j defined 
by 

X~ = xi + c~jxj (10)* 

then it can be shown that the corresponding 
symmetric stress tensor o~j is given by 

crij = ~v(3jk + Cjk) -- (11)* 

R 

where 3ij is the Kronecker delta, n the number 
of atoms in one unit cell, and v the volume of one 
unit cell in the deformed crystal. 

The present author [10] has calculated the 
ideal strength of solid argon from these equations 
for a wide variety of different modes of deforma- 
tion, using appropriate values of A and B 
(equation 7) computed from the lattice para- 
meter and binding energy at 0~ [49]. The most 
important results from [10] are summarised 
below in table IV. Also included in that table for 
purposes of comparison are a summary of the 
results of Mackenzie, Born and Fiirth, and 
Tyson. These authors all used arbitrary units, so 
that only their values of geometric parameters 
and of the ratios emax/E or 7max/G make meaning- 
ful comparisons. Consequently only this informa- 
tion is included in table IV. Table V lists the 
elastic constants of argon calculated by the 
present author from the same potential model, 
together with the experimentally determined 
values. The comparison of these values affords 
one test of the validity of the potential model. 

Several comments are needed to amplify 
table IV. The labels (a)-(.j) used below correspond 
to the same labels in table IV itself. 
(a) In uniaxial tension Ox3 is arbitrarily chosen 
as the tensile axis. Thus, for constrained tension 
all c~ are zero except c3~, and for unconstrained 
tension all cqj are zero except %3. 
(b) In each case the ideal strength is taken to be 
the largest value of eaa-i.e, it is implied that the 
deformation remains stable up to this po in t -  
and the strain values quoted are those corres- 
ponding to this stress. 
(c) This direction, between ~1 10) and (100) ,  
and about 5 ~ from the former, corresponded to 
the lowest value of ~max for constrained uniaxial 
tension. (1 1 1) gave the highest value. 

247 



N.  H.  M A C M I L L A N  

T A B L E  IV The ideal strength of solid argon (units of 101~ dynes/cm 2) 

Mode of Deformation amax (b) c~3 cll = c22 E amax/E Author 

Uniaxial tension (a) 

(100)  constrained 0.320 0.23 0 3.86 0.083 Macmillan 
(1 10) ,, 0.268 0.20 0 5.24 0.051 ,, 
(1 1 1 ) ,, (c) 0.345 0.18 0 5.70 0.061 ,, 
(hol)  ,, (c) 0.267 0.20 0 - -  - -  ,, 
(100)  unconstrained (d) (e) 0.345 0.26 - 0.027 2.24 0.154 ,, 

(1 + N 
_ _  c33),~ 1.25 - -  0.16 Born and Ffirth 

" (1 + c11) 
- -  0.25 - -  - -  0.145 Tyson 

(1 1 1 ) unconstrained (d) (e) 0.352 0.18 - 0.006 5.20 0.068 Macmillan 
,, - -  0.18 - -  - -  0.064 Tyson 

Biaxial tension and plane 
strain ( f )  0.256 (f)  0 0.13 - -  - -  Macmillan 
Triaxial tension (g) 0.254 (g) 0.09 0.09 - -  - -  ,, 

. . . . .  ( i )  C31 Cll ( j )  G . . . .  /G 

Simple shear (h) 

plane direction 
{100} (001 ) 0.243 0.20 
{100} (01 1 ) 0.196 0.16 
{110} (001)  0.425 0.22 
{1 10} (1 _10) 0.261 0.34 
{111} (110)  0.137 0.20 
{111} ( i i 2 )  0.188 0.20 
{111} (112) - 0.077 - 0.12 

- -  - 0.13 
~ - -  0.13 

0.088 - -  - -  Macmillan 
0.055 - -  - -  
0.077 - -  - -  
0.051 - -  - -  
0.044 - -  - -  
0.058 - -  - -  
0.015 1.043 0.074 
- -  - -  0.062 Tyson 
- -  - -  0.062 Mackenzie 

T A B L E  V The elastic constants of argon* 

Calculated Experimental 

cn 3.86 4.39 5.29 4.82 
c12 2.219 1.83 1.35 1.28 
c44 2.219 1.64 1.59 1.24 
Temperature ~ K 0 0 4.2 0 
Reference [10] [67] [68] [69] 

*In the notation of Nye [39], units of 101~ dynes/cm ~. 
-~These values are required to be equal by the Cauchy 
relations. 

(d) T h e  va lues  o f  c n  ( =  c22) c o r r e s p o n d i n g  to 
a n = a ~  = 0 were  f o u n d  by  min imi s ing  the  
c rys ta l  energy  wi th  respec t  to c n  fo r  each  va lue  
o f  c3~. F o r  less s y m m e t r i c  o r i en t a t i ons  o f  Ox3 a 
m i n i m i s a t i o n  wi th  respec t  to  m o r e  t h a n  one  
p a r a m e t e r  is r e q u i r e d  (see [10] fo r  fu r the r  
detai ls) .  
(e) I n  the  u n c o n s t r a i n e d  ca lcu la t ions  Po i s son ' s  
r a t i o  was f o u n d  to  decrease  s teadi ly  wi th  
i nc rea s ing  c33, and  even  to change  sign a t  ve ry  
h igh  stress levels. Thus ,  a t  the  h ighes t  stresses, 
t he  .crystal e x p a n d e d  ra the r  t h a n  c o n t r a c t e d  
la te ra l ly  wi th  inc reas ing  tensi le  strain.  
( f )  T h i s  m o d e  o f  d e f o r m a t i o n  is def ined by  
a n  = a ~  =/: O, c33 = O, whe re  Oxi are  the  cube  
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axes. H e n c e  c~1 = c22 v a 0, a~3 v a 0, and  all  o f f  
d i agona l  eij and  ~ij are  zero.  The  va lue  q u o t e d  
fo r  amax is the  m a x i m u m  va lue  o f  a l l  ( =  cr2~). 
(g) This  m o d e  o f  d e f o r m a t i o n  is def ined by  

a n  = a22 = a ~  v~ 0. H e n c e c  n = c22 = c83 v ~ 0, 
a n d  all of f  d i agona l  eij and  aij a re  zero.  T h e  
va lue  q u o t e d  for  amax is the  m a x i m u m  va lue  o f  
~ ( =  ~ = ~ 3 . ) .  

(h) Ca lcu la t ions  o f  the  ideal  s t rength  in s imple  
shear  "r~nax are  inheren t ly  m o r e  difficult,  since 
shear  in even  the  m o s t  symmet r i ca l  d i rec t ions  
cons ide rab ly  reduces  crystal  s y m m e t r y  [10]. 
Thus ,  several  pa r ame te r s  a re  needed  to ful ly 
re lax  the  crystal .  I n  the  p re sen t  ca lcu la t ions  the  
c o n v e n t i o n  was  a d o p t e d  o f  shear ing  para l le l  to 
Ox3, on  the  p l ane  pe rpend i cu l a r  to Ox~. Thus ,  a 
shear  s t ra in  c~t was imposed ,  a n d  the  shear ing  
p lanes  (which were  a s sumed  to  be r igid)  were  
then  a l lowed  to re lax para l le l  to O x l -  i.e. the  
energy  o f  the  crystal  was m i n i m i s e d  wi th  respect  
to c n fo r  each  va lue  o f  c3~. This  is the  m o s t  
i m p o r t a n t  re laxa t ion ,  and  has  the  m o s t  m a r k e d  
effect on  "rmax. I t  is i m p o r t a n t  to  recognise  here,  
however ,  t ha t  qu i te  large  stresses r e m a i n  
unre laxed ,  so tha t  the  va lues  o f  ~'max q u o t e d  a re  
p r o b a b l y  overes t imates .  
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(i) The value quoted for ~'max is the maximum 
value of e31. 
(j) The spacing of the shearing planes was found 
to increase ever more rapidly with increasing ca1 
until, at the largest shear strains, the planes were 
moving apart normally as much as they were 
sliding over one another. 

It is also interesting to note that ~rrn~x and the 
corresponding value of can for constrained 
uniaxial tension showed comparatively little 
variation with orientation. Also, the differences 
between the o-max values for constrained and 
unconstrained uniaxial tension in given high 
symmetry directions were small. It is therefore 
concluded that the ideal strength of argon for 
unconstrained uniaxial tension in any direction 
is also likely to show little orientation depend- 
ence. It is also seen from table IV that, in the 
shear calculations, the increase in interplanar 
spacing of the shear planes is least for {1 1 1 } 
(112)  shear. This mode corresponds to the 
observed slip system of the fcc structure, and 
gave the lowest value of ~-max. In separate 
calculations it has been shown [10] that for this 
shear mode: (i) at the strain corresponding to the 
quoted value of  "rmax the unrelaxed stress 
components acting on the crystal were 
o-~2 = -  0.053, a~3 = 0.070 (in the units of 
table IV); (ii) over a wide range of values of ~11, 
~ 7 " m a x / ~ o ' l l  = - -  0 . 1 7 2 .  

Finally, calculations have also been made 
[10, 26] for the case of (100)  unconstrained 
uniaxial tension to test the assumption that the 
deformation remains stable up to the maximum 
value of o-83. Assuming dead loading, the present 
author [10] concluded that the crystal will first 
become unstable with respect to some arbitrary 
virtual displacement when o-a3 = 2.9 x 109 
dynes/cm 2 - i.e. the ideal strength in this mode of  
deformation, at least under dead loading 
conditions, is ~-~ 15 ~ less than the maximum 
value of %a. The corresponding maximum 
strain is reduced from c~3 = 0.26, cn = c22 = 
- 0.027 to c~3 ~ 0.12, e l i =  c2~ = - 0.024. A 
similar analysis by Born and Ftirth [26], in 
arbitrary units, predicted a similar percentage 
reduction in the stress values, and similar re- 
ductions in the strain values. 

The present author [10] similarly examined the 
case of  biaxial tension and plane strain, and 
found a reduction in the estimated ideal strength 
for that mode of deformation of approximately 
6 ~ ,  to 2.40 x 109 dynes/cm 2, and in the 
corresponding strain cll (=  c22) from 0. l 3 to 0.09. 

3.4.3. Ionic Solids 
The ideal strength of sodium chloride has also 
been widely studied, using the Born and the 
Born-Mayer potential models. It was as long ago 
as 1923 that Zwicky [50] first used the former 
model - which may be written in the notation of  
the present paper as 

e 2 A 
u(R) = ~ ~ + ~ (12) 

where e is the charge on the electron. Zwicky 
used a semi-analytical method to sum this energy 
function over all lattice sites to obtain the total 
energy, and to differentiate this energy to obtain 
the stress. He took n = 9 from compressibility 
data, and deduced A, which was assumed to be 
the same for anion-anion, anion-cation and 
cation-cation interactions, from the requirement 
that the total energy be a minimum at the 
observed equilibrium lattice parameter. Zwicky 
assumed Poisson's ratio to be constant, and the 
deformation to be stable up to the stress maxi- 
mum - so that in effect he calculated o-max as the 
maximum tensile stress for partly constrained 
(100)  uniaxial tension. He obtained o - m a x  = 

2 x 1010 dynes/cm 2 at a tensile strain of 0.14 andt 
a Poisson contraction of 0.023. 

De Boer [42] repeated this calculation, without 
taking the Poisson contraction into account, and 
using a simpler, semi-analytic method o f  
computation. He thereby estimated o-max for  
constrained uniaxial tension as 2.83 x 101~ 
dynes/cm ~ at a tensile strain of 0.17. In a 
further version of this calculation, which incor- 
porated a crude estimate of the van der Waals 
contribution to the bonding, de Boer obtained a 
maximum tensile stress of 2.62 x 101~ dynes/cm 2. 

Tyson [43] also repeated Zwicky's Born modeJ 
calculation, allowing for Poisson contraction,and 
performing all lattice sums accurately on a 
computer. He calculated o-max for ( 1 0 0 )  
unconstrained tension as 2.27 x 101~ dynes/cm ~ 
(0.05E) at a tensile strain of 0.14. 

More recently Bartenev and Koryak-Dorort- 
enko [51 ] used the same Born model to calculate 
the maximum tensile stress in sodium chloride 
deformed in (1 10) and (1 1 1) uniaxial tension, 
They too assumed Poisson's ratio to be constant, 
but to have different values in two perpendicular 
directions. This last assumption is in contradic- 
tion to the symmetry requirements in the case o f  
(1 1 1) uniaxial tension. In the (1 10) case these 
authors obtained O ' m a  x = 3.86 x 101~ dynes/cm ~ 
at a tensile strain of 0.185, with Poisson contrac- 
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tions of 0.0450 and 0.0298 parallel to (1T0} and 
(001} respectively. For (1 1 1} extension they 
obtained Crma,, = 7.15 • 101~ dynes/cm z a t  a 
tensile strain of 0.25, with Poisson contractions 
of 0.025 and 0.031 parallel to (1 i0}  and (1 12) 
respectively. Due to the particular assumptions 
about Poisson's ratio, both these values of Crmax 
refer to partly constrained uniaxial tension. 

Tyson [43] also applied the Born model to the 
calculation of the ideal strength of sodium 
chloride in simple shear. In a calculation of ~-max 
for {110} (110)  shear, making the s a m e  
assumptions about relaxation and stability as in 
the argon shear calculations listed in table IV and 
discussed earlier, Tyson obtained 2.58 x 10 l~ 
dynes/cm ~ (0.13G) at a shear strain of 0.24. By 
allowing suitable (uniform) distortion of the 
shear planes, Tyson found that this value could 
be reduced to 1.99 x 101~ dynes/cm 2 (0.10G) at 
a shear strain of 0.20. 

Recently, Tyson [43], Szomor [52], Kelly, 
Tyson, and Cottrell [1 ], and the present author 
[10] have all used the Born-Mayer potential 
model to extend these calculations. In this model 

e 2 cij dij 
u(R)  = ~ R R 6 R 8 + bb ib j f i j e -~ / ;  (13) 

cij and djj refer respectively to the dipole-dipole 
and dipole-quadrupole van der Waals inter- 
actions, and each differ for anion-anion, anion- 
cation and cation-cation interactions. The 
Pauling factors f~j have a similar multiplicity of 
values. The parameters bi differ for anions and 
cations. The values of cij and d~j are obtained 
experimentally; those o f f ,  j, bj, b and p are 
adjustable, and are determined from the bulk 
compressibility, the equilibrium lattice para- 
meter, and certain empirically observed rules 
about the additivity of the ionic radii in series 
of alkali halides. All data used by the present 
author were appropriate to room temperature. 
Further information can be found in the 
literature [10, 43, 48]. 

Szomor [52] used a computational method 
similar to that of Zwicky [50] to calculate the 
maximum tensile stress for partly constrained 
(100} uniaxial tension for a range of  alkali 
halides. He obtained a value for sodium chloride 
of  2.95 x 101~ dynes/cm 2. 

Tyson [43], Kelly, Tyson, and Cottrell [1 ], and 
the present author [10] all used similar methods 
of computation that are extensions of the analysis 
presented in the previous sub-section 3.4.2 for 
argon. 
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It has been shown by Born and Huang [53] 
that, in a crystal having more than one atom per 
lattice point, each sub-lattice is similarly 
deformed if the interatomic forces are central in 
nature, and if each atom site is a centre of sym- 
metry. This is the case for the sodium chloride 
structure, and means that no "internal strain" 
will occur in the unit cell of the deformed crystal. 
Hence the same set of strain parameters cij is 
sufficient to describe the deformation in this case 
also. Thus, to extend the previous argon 
calculations to the case of sodium chloride it is 
only necessary to generalise the summation ~ of 

R 

equations 9 and 11 to include all the different 
anion-anion, anion-cation and cation-cation 
interactions. The details are discussed fully by 
[10]. 

The maximum stress values and elastic 
constants obtained from these calculations are 
listed in tables VI and VII, which are analogues 
of tables IV and V respectively. In particular, the 
comments labelled (a)-(j) in the previous sub- 
section 3.4.2 are equally applicable to tables IV 
and VI. The following discussion, therefore, 
mentions explicitly only the differences in 
behaviour between the argon and sodium 
chloride cases. 

In the sodium chloride case (rmax for con- 
strained tension is a minimum parallel to (100} 
and a maximum parallel to (111}. The variation 
in am~x with orientation is far greater than in the 
argon case for both constrained and uncon- 
strained tension. In both modes the high (111} 
strength results from trying to pull apart 
alternate {222 } layers of anions and cations. For  
sodium chloride the calculation of Crmax has been 
carried out for (110} unconstrained tension. 
This required minimising the energy of the 
crystal with respect to the two independent 
parameters cll and c~2 for each value of c3a. 

In many modes of deformation the effect of 
relaxation is greater in the sodium chloride case 
than in the argon case (e.g. for sodium chloride 
in {110} ( l i 0 )  shear, it has been shown [1, 10] 
that &rmax/~all - - 0.5). Note too that although 
the value of'rm~x for {110} (110)  shear, which 
corresponds to the observed glide elements in 
sodium chloride, is the lowest for a shear that 
regenerates the crystal lattice, it is not the lowest 
value found overall. It is not possible to judge 
whether the results of the fully relaxed calcula- 
tions would change this situation. In one case, 
{110} (001)  shear, the shearing planes get 
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T A B L E  V l  The ideal strength of sodium chloride (units of 10 ~ dynes/cm ~) 

M o d e  of  d e f o r m a t i o n  ~m~x ca8 c n  = c ~  E C~max/E A u t h o r  

U n i a x i a l  t e n s i o n  

( 1 0 0 )  c o n s t r a i n e d  0.282 0.17 0 4.616 0.062 M a c m i l l a n  
,, 0 .300 - -  0 4.98 0.06 T y s o n  

1 10 ) c o n s t r a i n e d  0.596 0.34 0 4.873 0.122 M a c m i l l a n  
(1 1 1 ) c o n s t r a i n e d  2.009 1.77 0 4.945 0.405 ,, 
( 1 0 0 )  u n c o n s t r a i n e d  0.240 0.18 - 0.031 3.682 0.065 

,, 0.266 0.13 - -  4.08 0.067 T y s o n  
( 1  1 0 )  u n c o n s t r a i n e d  0.461 0.29 e22 = - 0.083 4.078 0.113 M a c m i l l a n  

c11 = 0.005 
(1 1 1 ) u n c o n s t r a i n e d  1.240 0.42 - 0 .024 4.204 0.295 ,, 

B i ax i a l  t en s ion  a n d  
p l a n e  s t r a i n  0 .350 0 0.16 - -  - -  M a c m i l l a n  

0.363 0 - -  6.55 0.055 T y s o n  
T r i a x i a l  t e n s i o n  0.428 0.16 0.16 - -  - -  M a c m i l l a n  

,, 0 .434 - -  - -  8.04 0.054 T y s o n  

rm~x Ca1 Cll G "rmax/G 

Simple  shea r  

p l a n e  d i r e c t i o n  
{100  } ( 0 0 1  ) 0.419 0.30 0.075 - -  - -  M a c m i l l a n  
{100}  ( 0 1 1  ) 0.353 0.30 0.056 - -  - -  

,, 0 .360 0.30 - -  1.64 0.217 T y s o n  
{ 1 10} ( 0 0 1  ) 1.762 0.60 -- 0.051 - -  - -  M a c m i l l a n  
{1 10} (1 i 0 )  0 .267 0.30 0.091 1.454 0.183 

,, 0.284 0.27 - -  1.72 0.164 T y s o n  
{1 1 l} (1 i 0 )  0 .320 0.44 0.109 - -  - -  M a c m i l l a n  
{1 1 1} < i i 2 )  0 .229 0.28 0.054 - -  - -  
( 111}  ( 1 1 2 )  - 0 .510 - 0 .60 0.021 - -  - -  i', 

T A B L E  V I I  The elastic constants of sodium chloride* 

C a l c u l a t e d  E x p e r i m e n t a l  

c l i  4.616 4.87 

Cra 1.7077 1.24 

c4~ 1.7079 1.26 
T e m p e r a t u r e  ~ K 300 300 

Re fe r ence  [10l [701 

* In  t he  n o t a t i o n  o f  N y e  [39], un i t s  o f  1011 d y n e s / c m  ~. 
t T h e s e  va lues  a r e  r e q u i r e d  to  be  e q u a l  b y  the  C a u c h y  
r e l a t i ons .  

closer together initially and, although they 
start to separate at larger shear strains, they 
never regain their original spacing. This is due to 
the fact that initially each ion moves towards one 
of the opposite sign in the layer below. 

The order of magnitude increase in both 
elastic constants and maximum stress values for 
sodium chloride, over the corresponding values 
for argon, is simply a measure of the much 
greater strength of the ionic bond. 

The results show that for ~100) tension there 
is reasonable agreement between the values 
obtained from the Born potential and those 
obtained from the Born-Mayer potential. For 
(1 10) and (1 1 1) tension the agreement between 

the calculations of the present author [10] 
(Born-Mayer potential) and those of Bartenev 
and Koryak-Doronenko [51] (Born potential) is 
less good. These discrepancies can probably be 
traced to the particular constraints imposed by 
the values of Poisson's ratio assumed by the 
latter authors. In the case of the shear calcula- 
tions agreement between the results obtained 
from the two potentials is again quite good. 

Using the same analysis as in the case of the 
argon calculations, the present author [10] has 
made a few investigations of the validity of the 
assumption that the deformation of sodium 
chloride remains stable up to the maximum value 
of the appropriate stress component. For (100) 
constrained tension it was found that the ideal 
strength was predicted to be 2 ~ less than the 
maximum stress (with a corresponding reduction 
in ca3 from 0.17 to 0.14), while for (100) 
unconstrained tension the reduction was only 
0.1 ~ (with caa correspondingly reduced from 
0.18 to 0.17). For biaxial tension and plane 
strain the reduction was about 8~,  and the 
corresponding value of cli (= c22) was reduced 
from 0.16 to 0.10. The same analysis was also 
extended to the case of {110} ( l i 0 )  simple 
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shear, and predicted an ideal strength of 0.5 70 
less than the maximum value of a~l, with a 
corresponding reduction in the accompanying 
shear strain c31 from 0.30 to 0.28. 

It  is, therefore, apparent that less error is 
introduced by equating the maximum stress with 
the ideal strength in the case of sodium chloride 
than in the case of argon. 

3.5. The Temperature Dependence of the 
1deal Strength 

It  has already been pointed out that: (i) the 
potential models used in the present calculations 
ignore the contribution of the kinetic energy of 
the atoms to the total energy of the system; (ii) 
the summation procedures used assume each 
atom to be at its equilibrium bulk lattice site, 
and thus ignore surface effects, lattice vacancies 
and thermal displacements. These potential 
models and summation methods should, there- 
fore, only be used to calculate the ideal strength 
at 0 ~ K, if the greatest accuracy is to be obtained. 
Also, for consistency the adjustable parameters 
in the potential model should be calculated from 
experimental data appropriate to 0~ This was 
done for the model of argon discussed above, 
but was not possible in the case of sodium 
chloride, as the van der Waals interaction para- 
meters in the Born-Mayer model have only been 
determined for room temperature. Most of the 
other calculations reviewed in the preceding 
pages also make use of data appropriate to room 
temperature. 

Temperature thus enters into calculations of 
the ideal strength in terms of  its effect on the 
adjustable parameters in the potential models, 
and in terms of the effect of the thermal displace- 
ments of the atoms on the lattice sums involved. 
Since similar lattice sums are also involved in the 
calculation of the adjustable parameters, these 
two effects are interrelated. 

The only treatment of the effect of thermal 
vibrations on the ideal strength known to this 
author is an approximate analysis by Zwicky 
[50]. This indicates a reduction in the maximum 
(100)  uniaxial tensile stress proportional to the 
root mean square amplitude of the atomic 
vibrations. However, some idea of the effect of 
temperature on O'max can be obtained from the 
Orowan-Polanyi equation (1), simply by inserting 
,values of the elastic constant, surface energy and 
~nterplanar spacing appropriate to different 
lemperatures. Table II lists values of amax 
,obtained by Kelly [3] in this way for copper, 
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tungsten and m-iron at 0 and 293~ These 
results show that amax is reduced by ~ 30 ~ over 
this temperature interval. However, due to the 
uncertainties in the surface energy values, this 
estimate may be in error. 

There is also a second effect of temperature on 
the ideal strength. At any temperature above 
0~  there is a finite probability of the thermal 
nucleation of a tiny crack or dislocation loop in 
the material. In a highly stressed material such 
an occurrence would inevitably cause fracture. 
Kelly [3] has considered the probability of the 
nucleation of a dislocation loop at the surface of 
a crystal subjected to shear. He concluded that 
for any material, if only total dislocations were to 
be nucleated, then the ideal shear strength would 
show little temperature dependence due to this 
effect. Kelly also calculated that for copper, if 
partial dislocations were to be nucleated, then 
the ideal shear strength might be halved over the 
temperature interval 300 to 1173 ~ K. Again it is 
difficult to assess the accuracy of these results, 
since both the line energy of the dislocation and 
the stacking fault energy, which were treated as 
constants in the calculation, in fact vary with 
both strain and temperature in some unknown 
manner. 

Accordingly, it has to be concluded that no 
accurate estimates of the temperature depend- 
ence of the ideal strength have yet been made. 

4. Comparison of Calculated and 
Experimental Results 

Despite the limitations of the ideal strength 
calculations and the paucity of consistent high 
strength experimental data, it is interesting to 
make such comparisons as are possible. 

Inthe absence of experimental data on the 
strength of anything but highly imperfect poly- 
crystalline specimens of argon [54-56], the most 
meaningful comparisons are for the case of 
sodium chloride. In this material the highest 
(100)  tensile strength measured experimentally 
is 1.08 x 101~ dynes/cm 2 [57]. In comparison, 
the most accurate calculations estimate the 
corresponding ideal strength as about 2.5 x 101~ 
dynes/cm ~, and the Orowan-Polanyi equation 
gives a value of 4.3 x 101~ dynes/cm ~. It is, 
therefore, apparent that the gap between theory 
and experiment is largely closed in this case, but 
that the ideal (10 0) tensile strength has probably 
still not quite been realised experimentally. 

In the case of (100)  uniaxial extension of  
argon, the most accurate calculations gave 
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amax = 3.45 • 109 dynes/cm 2. Taking Young's 
modulus as 4.5 x 101~ dynes/cm 2 (from the 
experimental data in table V), the surface energy 
as 35 ergs/cm 2 (the surface tension of liquid 
argon at the triple point [58]), and the inter- 
planar spacing as 2.65 x 10 .8 cm [49], the 
Orowan-Polanyi equation (1) gives crmax as 
7.6 x 109 dynes/cm ~ (0.17E). 

Thus, in both cases the Orowan-Polanyi 
equation overestimates o'max by about 2 x as 
compared to the most accurate calculations. I f  
this is generally true then the gap between theory 
and experiment has been removed in the case of  
the very highest tensile strengths observed in 
silica glass (table I), and reduced to a factor 
N 2 • or less for many other materials. 

In the case of iron the reverse situation arises. 
The highest tensile strength obtained experiment- 
ally is 1.31 x 1011 dynes/cm 2 at a strain of  0.049 
from a whisker of (1 1 1) orientation [59]. This is 
higher than the calculated ideal (100)  uniaxial 
tensile strengths of 1.7 x 109 dynes/cm 2 and 
8.90 x 101~ dynes/cm 2 obtained by Milstein [27] 
for bcc and bct forms of iron respectively. This 
discrepancy is almost certainly due to the 
inadequacy of the central-force two-body Morse 
potential as a model of  the bonding in iron. 

In the case of  the shear calculations, the values 
of  ~'max/G from the simple Frenkel calculation, 
from Kelly's extension of Mackenzie's calcula- 
tion, and from the most accurate sodium 
chloride calculations, are all in general agreement. 
The argon calculations and, more particularly, 
Mackenzie's calculations for the shear of  fcc or 
cph metals on close packed planes give rather 
lower values of  ~'max/G. 

Comparison of these results with experiment is 
complicated by the fact that the calculations 
were performed for simple shear, while experi- 
mental high strengths are almost invariably 
measured in bending or tension. Consequently, 
in the experiments there are both shear and 
tensile stresses acting on any slip system in 
general. The ideal shear strength under such 
conditions will probably be less than that for 
simple shear. 

In spite of  this, the highest shear strengths 
observed by Brenner [59] (table I) in the 
strongest of his copper and silver whiskers are in 
good agreement with Mackenzie's calculations. 
The shear strengths observed consistently by 
Crump and Mitchell [11] (table I) on some slip 
systems in cadmium whiskers were even higher. 
Thus, again it would seem that in these instances 

the gap between theory and experiment is closed, 
and that these latter values in particular probably 
do represent experimental realisation of the ideal 
strength under the particular test conditions 
involved. In other cases, e.g. Brenner's strongest 
whisker of  iron, the gap between theory and 
experiment is closed to within a factor ~ 2 • 

I f  these conclusions are correct, it follows that 
the surface is certainly not very much weaker 
than the interior of  the solid. 

Since this article was written calculations of 
the ideal strength of sodium have been published 
(Z. S. Basinki et al, Proc. 2rid Int. Conf. on the 
Strength of Metals and alloys, Asilomar, 1970, 
(American Society for Metals, Cleveland, t971) 
118), together with the results of a further deter- 
mination of the elastic constants of  argon 
(B. Dorner artd H. Egger, Phys. Star. Sol. (b) 
43 (1971) 611). 
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